Wolfram Pernice

Wolfram Pernice

Jahrgang 1978
Mitglied seit 2013
Fach: Physik/Elektrotechnik

Kontakt
Westfälische Wilhelms-Universität Münster
Institut für Physik
Wilhelm-Klemm-Straße 10
48149 Münster

Tel.: (0251) 83-639 57
wolfram.pernice@uni-muenster.de

zur persönlichen Website

Forschungsgebiete

  • Nanophotonik

  • Quantenoptik

 

Vita

  • seit 2015

    Professur für Experimentalphysik an der Westfälischen Wilhelms-Universität Münster

  • Seit 2011

    Leiter einer Emmy Noether Nachwuchsgruppe am KIT

  • 2008-2011

    Postdoktorand an der Yale University

  • 2008-2010

    Feodor-Lynen Stipendium der Alexander-von-Humboldt Stiftung

  • 2004-2007

    Promotion an der University of Oxford

  • 2001-2002

    Studium der Informatik an der Indiana University, Bloomington

  • 1998-2004

    Studium der Mikrosystemtechnik an der Universität Freiburg

Publikation im Fokus

Diamond-integrated optomechanical circuits

Diamond-integrated optomechanical circuits

Diamond offers unique material advantages for the realization of micro- and nanomechanical resonators because of its high Young’s modulus, compatibility with harsh environments and superior thermal properties. At the same time, the wide electronic bandgap makes diamond a nice material for integrated optics because of broadband transparency and the absence of free-carrier absorption commonly encountered in silicon photonics. We took advantage of both to engineer full-scale optomechanical circuits in diamond thin films. Such films fabricated by chemical vapour deposition provide a convenient wafer-scale substrate for the realization of high-quality nanophotonic devices. Using free-standing nanomechanical resonators embedded in on-chip Mach–Zehnder interferometers, we demonstrate efficient optomechanical transduction via gradient optical forces. Fabricated diamond resonators reproducibly show high mechanical quality factors. Such low cost, wideband, carrier-free photonic circuits hold promise for all-optical sensing and optomechanical signal processing at ultra-high frequencies. P. Rath, S. Khasminskaya, C. Nebel, C. Wild, W. Pernice, Nature Communications 4, 1668 (2013).

Publikationen

  • High speed travelling wave single-photon detectors with near-unity quantum efficiency

    W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, H. Tang, “High speed travelling wave single-photon detectors with near-unity quantum efficiency”, Nature Communications, 3, 1325 (2012).

  • Dynamic manipulation of mechanical resonators in the high amplitude regime through optical backaction

    M. Bagheri, M. Poot, M. Li, W. Pernice, H. Tang “Dynamic manipulation of mechanical resonators in the high amplitude regime through optical backaction”, Nature Nanotechnology 6, 726 (2011).

  • Tunable bipolar optical interactions between guided lightwaves

    M. Li, W. Pernice, H. Tang, “Tunable bipolar optical interactions between guided lightwaves”, Nature Photonics 3, 464 (2009).

  • Harnessing optical forces in integrated photonic circuits

    M. Li , W. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, H. Tang , “Harnessing optical forces in integrated photonic circuits.”, Nature, 456, 480 (2008).

  • Publikationsverzeichnis

Seite empfehlen