YouTubeVimeo
Ronny Thomale

Ronny Thomale

Member from 2011 to 2016
subject: Physics

Contact
Julius-Maximilians Universität Würzburg
Institut für Theoretische Festkörperphysik
Am Hubland
97074 Würzburg

Tel.: (0931) 31-857 12
Fax: (0931) 31-851 41
ronny.thomale@physik.uni-wuerzburg.de

Personal web page

Research Areas

  • Topological phases

  • Renorming group

  • Superconductivity

  • Spin fluids

  • Quantum Hall effect

 

Curriculum Vitae

  • since September 2013

    University Professor at the Julius-Maximilians University Würzburg, Institut für Theoretische Physik I

  • 2012 -2013

    Assistant Professor at the ETH Lausanne, Department for the Theory of Quantum Matter

  • 2011-2012

    SITP Fellow at Stanford University

  • 2009-2011

    Humboldt Feodor Lynen Scholarship at Princeton University

  • 2009

    Shared Postdoctoral Fellow at the Institute for Theory of Condensed Matter in Karlsruhe/TPI Dortmund

  • 2008-2009

    Postdoctoral Fellow at the Institute for Theory of Condensed Matter in Karlsruhe

  • 2005-2008

    Ph.D. in Theoretical Physics at the University of Karlsruhe, Title: Fractional Statistics in Low-dimensional Spin Systems

  • 2005

    Master's Thesis at the University of Karlsruhe, Title: Holon Excitations in the Kuramoto-Yokoyoma Model

  • 2004-2005

    DAAD Research Scholarship at UC Berkeley, CA

  • 2002-2004

    Undergraduate Student of Physics in Karlsruhe

Featured Publication

Tunable electron interactions and non-Abelian statistics in Graphene

Tunable electron interactions and non-Abelian statistics in Graphene

Englisch: The recent discovery of fractional quantum Hall (FQH) states in graphene raises the question of whether the physics of graphene offers any advantages over GaAs-based materials in exploring strongly correlated states of two-dimensional electrons. Here we propose a method to continuously tune the effective electron interactions in graphene and its bilayer by the dielectric environment of the sample. Using this method, the charge gaps of prominent FQH states, including ?=1/3 or ?=5/2 states, can be increased several times, or reduced to zero. The tunability of the interactions can be used to realize and stabilize various strongly correlated phases and explore the transitions between them. Die Entdeckung fraktioneller Quanten Hall Zustände in Graphen wirft die Frage auf, ob die Materialeigenschaften von Graphen Vorteile gegenüber GaAs-basierten Heterostrukturen bieten, um diese Zustände zu untersuchen. Wir entwickeln eine Methode, mit der die effektive Elektronwechselwirkung in Graphen und entsprechenden Mehrschichtsystemen durch die dielektrische Umgebung kontinuierlich angepasst werden kann. Wir zeigen, dass mit dieser Methode die Ladungsenergielücken um ein Vielfaches im Vergleich zu GaAs erhöht oder auf Wunsch auch reduziert werden können. Die Flexibilität der einstellbaren Wechselwirkung ermöglicht die Realisierung verschiedener stark korrelierter Quantenphasen und die Untersuchung der Phasenübergänge zwischen ihnen. Z. Papic, R. Thomale und D. Abanin, Tunable electron interactions and non-Abelian statistics in Graphene, Phys. Rev. Lett. 107, 176602 (2011).

Publications

  • Superconducting d-wave instability in KFe2As2

    R. Thomale, C. Platt, W. Hanke, J. Hu und B. A. Bernevig, Superconducting d-wave instability in KFe2As2, Phys. Rev. Lett. 107, 117001 (2011).

  • The entanglement gap and a new principle of adiabatic continuity

    R. Thomale, A. Sterdyniak, N. Regnault und B. A. Bernevig, The entanglement gap and a new principle of adiabatic continuity, Phys. Rev. Lett. 104, 180502 (2010).

  • Non-Abelian statistics in a quantum antiferromagnet

    M. Greiter und R. Thomale, Non-Abelian statistics in a quantum antiferromagnet, Phys. Rev. Lett. 102, 207203 (2009).

  • Thermal Hall Conductivity as a Probe of Gap Structure in Multi-band Superconductors

    J. G. Checkelsky, R. Thomale, L. Li, G. F. Chen, J. L. Luo, N. L. Wang und N. P. Ong, Thermal Hall Conductivity as a Probe of Gap Structure in Multi-band Superconductors: The Case of Ba11–xKxFe2As2, Phys. Rev. B 86, 180502 (2012), Rapid Communication, Editor's suggestion.

  • Publication list

Recommend site